EFFECT OF THERMAL STRESSESS ON THE MOTION
OF A SIMPLE GAS

Yu. I. Yalamov and A. A. Yushkanov UDC 533.72

On the basis of a gas-kinetic analysis it is shown that pure thermal stresses in a one-compo-
nent gas lead to transfer proportional to the third power of the temperature gradient.

Let us consider a one-component gas in which a temperature gradient is somehow created in a time much
less than the time of free travel of the gas molecules. It is assumed that the temperature gradient is constant
over the entire gas volume. Let us determine how the presence of the temperature gradient will affect the gas
motion, In doing this we will use the Boltzmann equation [1] for the distribution function f of the gas molecules:
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where I(f) is the collision integral and V' is the velocity of the gas molecules.

We orient the y axis along the direction of temperature variation. Henceforth we will assume that the
temperature gradient is sufficiently small, i.e.,
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where ) is the mean free path of the gas molecules, T is the absolute temperature, and L is a characteristic
length parameter.

Owing to the fact that the temperature gradient is established rapidly enough we can assume that at the
initial time the gas has a Maxwellian distribution,
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where m is the mass of a molecule, n is the number of molecules per unit volume, and k is Boltzmann's con-
stant.

Because of the smallness of € [condition (2)] one can agsert that the gas will relax to a Chapman —Enskog
distribution [1]. The relaxation time will be on the order of the time of free travel. Therefore, one can seek
the solution of the Boltzmann equation (1) with the initial condition (3) in the form
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Here the second term in the brackets describes the gas motion under the effect of the pressure gradient and is
obtained by direct integration in a linear approximation of the Boltzmann equation. The third term corresponds
to the Chapman—Enskog distribution in the field of the temperature gradient.
We introduce the designation
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With allowance for the initial condition (3), we obtain
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In a linear approximation with respect to & we will seek the function ¢(t) in the form
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The latter equation follows immediately from the initial condition (5). In a linear approximation with respect
to ¢ the Boltzmann equation is written in the form
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Actually, /8t ~ |V|/A and ¥V ~ |V |/L. The ratioof the operators (a/at)/TV ~L/A ~1/e. Hence, it follows that
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Multiplying both sides of Eq. (7) by ey(s/2~¢%exp(—c?) and integrating over velocity space, we obtain
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We integrate Eq. (8) with allowance for the initial condition (6):
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We substitute the solution obtained into the Boltzmann Eq. (1), We multiply both sides of the equation by ¢Zand
integrate over the entire velocity space. As a result, we have .
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Here y is the coefficient of thermal diffusivity and
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Let us consider a time t~7. Then on the right side of Eq. (10) one can replace T(t) with T(t =0) = T,, since the
terms allowing for the variation in T over a time t ~ 1 will be of a higher order of smallness.
Then the variation in T can be divided into two parts:
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while AT satisfies the equation
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The solution of Eq. {12) is written in the form
t
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Thus,

4
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If we are not interested in the kinetic stage but only the hydrodynamic stage, then the initial condition of tem~-
perature variation for the hydrodynamic stage will be
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We substitute the expression (14) obtained for T(t) into the Boltzmann Eq. (1) and allow for the smallness
of &€ (2). We then multiply both sides of the equation by vy and integrate over velocity space. As a result, we
obtain i
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As in the case with the temperature, we can divide the variation in velocity with time into two stages: hydrody-
namic and kinetic. The kinetic stage is characterized by the fact that it occurs for a time ~ 7,

The kinetic stage is described by the equation
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The solution of Eq. (17) is written in the form
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V is the velocity at the initial time in the hydrodynamic problem.

We assume that x ~ T®. Then [1] we have 7~ T®~!, Substituting x and 7 into (22), we obtain
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where
Fla) = —9%? + 10a—1.
In the model of a gas whose molecules interact with each other like rigid spheres « = 1/2. Then

If the molecules interact in accordance with the Lennard—Jones model, then at low temperatures o = 5/6 and
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At high temperatures o = 2/3 and
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Thus, the hydrodynamic velocity (23) arisingat the initial time proves to be proportional to the third
power of the temperature gradient, which permits one to ignore it in a linear approximation in problems of the
kinetic theory of gases and in the physics of aerosols [2].
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UTILIZATION OF LIQUID —GAS BUBBLE MIXTURES FOR
THE TRANSFER OF SHOCK-WAVE DISTURBANCES

I. M. Voskoboinikov, B. E. Gel'fand, UDC 532.546
S. A. Gubin, S. M. Kogarko, ‘
and O, E. Popov

Transfer of the energy of shock-wave disturbances from a gas to a liquid or to a liquid—gas bub-
ble mixture is considered. It is shown that the energy flux from the gas increases when a liquid
with gas bubbles is substituted for the pure liquid.

Liquids have been used for a long time as the transmission medium for transmitting pressure from a
gaseous medium to a certain object. For pressures at the wave front amounting to several hundreds of bars,
most liquids behave as incompressible liquids. Therefore, as a shock wave from the gas reaches the liquid
surface, the liquid receives only a weak acoustic wave carrying a small amount of stored energy, while most
of the energy remains in the wave reflected from the liquid surface.

One of the possible ways to increase the percentage of the shock-wave energy transmitted to the liquid
is to use a liquid mixed with gas bubbles as the transmission medium.

It is known [1] that the ratio of the wave energy flux in the liquid E, to the wave energy flux in the gas E,
is determined by
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In this expression, p; and ¢, are the density and the sound velocity in the gas; and p, and ¢, are the density
and the sound velocity in the liquid. If the acoustic resistances of two media are equal, complete transfer of
energy from one medium to the other occurs, i.e., E, = E,. If the acoustic resistance of one medium is much
higher than the resistance of the other, we have E, « E as the wave passes from the medium characterized by
picy to the medium characterized by p,c,. For instance, in the frequently encountered case of shock-wave
transition at the air—water interface, E, ~ 107 E,.

It is evident from the above. relationship that the value of E, can be increased by reducing the density and
the velocity of sound in the medium with the parameters p,c,. For this, it is sufficient to use a liquid with gas
bubbles instead of the pure liquid. For a liquid volume concentration up to 80%, the density of the two-phase
medium p will change slightly, since
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